Теория электрических цепей (основы электротехники)

Пример вычисления индуктивности http://256bit.ru/ Вычислить неопределенные интегралы. Контрольная работа

Элементы электрических цепей

Электротехника - область науки и техники, использующей электрическое и магнитное явления для практических целей. История развития этой науки занимает два столетия. Она началась после изобретения первого электрохимического источника электрической энергии в 1799 г. Именно тогда началось изучение свойств электрического тока, были установлены основные законы электрических цепей, электрические и магнитные явления стали использоваться для практических целей, были разработаны первые конструкции электрических машин и приборов. Жизнь современного человека без использования электрической энергии немыслима.

Синусоидальный ток. Формы его представления

Резонансные свойства электрических цепей синусоидального тока Еще раз подчеркнем замечательную особенность цепи в режиме резонанса. Токи протекающие в ветвях реактивных элементов могут принимать значения в десятки и сотни раз больше общего тока цепи. Поэтому резонанс цепи называют резонансом токов. Очень важно и то, что они противофазны

Трансформаторы Трансформатор для технических целей впервые был применен П.Н. Яблочковым в 1876 году для питания электрических свечей. Широкое применение трансформаторы получили после того, как М.О. Доливо-Добровольским была предложена трехфазная система передачи электроэнергии и разработана конструкция первого трехфазного трансформатора (1891г.) Принцип работы однофазных трансформаторов Если разомкнуть цепь вторичной обмотки, то ее ток I2 станет равным нулю

Промышленная электроника

Полупроводниковые приборы Электроника – это наука, изучающая принципы построения, работы и применения различных электронных приборов. Именно применение электронных приборов позволяет построить устройства, обладающие полезными для практических целей функциями – усиление электрических сигналов, передачу и прием информации (звук, текст, изображение), измерение параметров, и т.д. Исследование стабилизированного выпрямителя Цель работы Изучение основных параметров и характеристик выпрямителя с фильтром и стабилизатора напряжения.

Электронные устройства Большинство электронных управляющих, измерительных, вычислительных и других устройств питаются напряжением постоянного тока. Сетевое напряжение переменное, с частотой 50 Гц одно или трехфазное. Поэтому практически каждый электронный прибор снабжен автономным преобразователем напряжения переменного тока в напряжение постоянного тока. Значительно лучшими параметрами обладает схема двухполупериодного выпрямителя, разработанная в 1901 г. академиком Миткевичем

Операционный усилитель Современные разработчики электронной аппаратуры стремятся использовать готовые функциональные узлы в виде интегральных микросхем (ИМС). Схемные решения ИМС тщательно проработаны и обеспечивают высокое качество аппаратуры. Предприятия, выпускающие микросхемы, заинтересованы в их сбыте. Поэтому они стремятся разработать универсальные микросхемы, которые можно применять в качестве различных  функциональных узлов. Это повышает их спрос. Одной из таких ИМС является операционный усилитель (ОУ).

 Введение в цифровую электронику

Методика расчёта линейных электрических цепей переменного тока

Метод активных и реактивных составляющих токов Этот метод предусматривает использование схемы замещения с последовательным соединением элементов. В данном случае три параллельные ветви рассматриваются как три отдельные неразветвлённые цепи, подключенные к одному источнику с напряжением U. Поэтому в начале расчёта определяем полные сопротивления ветвей

Метод узловых и контурных уравнений Сущность метода состоит в составлении  системы уравнений по первому и второму законам Кирхгофа. Расчёт производим в следующем порядке. По первому закону составляем (n – 1) независимых уравнений, где n – количество узлов в схеме. Выбираем узел А.. По второму закону нам остаётся составить два уравнения, так как число уравнений в системе должно быть равно количеству неизвестных токов, а их три. Направления токов в ветвях выбираются произвольно. Направления обхода контуров принимаем (услов- но) по часовой стрелке. Таким образом, система уравнений в комплексной форме включает в себя одно уравнение, составленное по первому закону Кирхгофа и два уравнения, составленные по второму закону

Расчёт трёхфазной цепи при соединении приемника в звезду При расчёте несимметричной трехфазной цепи с потребителем, сое­динённым в звезду, схема может быть без нулевого провода или с нуле­вым проводом, который имеет комплексное сопротивление ZN. В обоих случаях система линейных и фазных напряжений генератора симметричны. Система линейных напряжений нагрузки останется также симметричной, так как линейные провода не обладают сопротивлением. Но система фазных напряжений нагрузки несимметрична из-за наличия напряжения смещения нейтрали UN. Трехфазная цепь при соединении приёмника в звезду представляет собой цепь с двумя узлами, расчёт подобных цепей наиболее целесообразно вести методом узлового напряжения.

Примеры выполнения курсовой работы

Расчет методом узловых потенциалов Будем рассматривать установившийся режим в линейной цепи при гармоническом воздействии

Расчет методом эквивалентного генератора В соответствии с заданием рассчитаем ток в пятой ветви. Крайние точки в пятой ветви обозначим буквами «а» и «b». Удаляем из электрической цепи пятую ветвь вместе с источником тока, подсоединенного параллельно ей.

Расчет методом узловых потенциалов

Расчет методом контурных токов Составим котурную матрицу В. Количество строк матрицы равно числу q независимых контуров, а номер строки - номеру контура графа. Число столбцов матрицы n соответствует числу ветвей в схеме (n= 9), номер столбца определяется номером ветви. Отметим, что элементы строки матрацы В являются коэффициентами уравнения, записанного по второму закону Кирхгофа для соответствующего электрического контура.

 

Информатика, черчение, математика