Начертательная геометрия Основы образования чертежа Позиционные и метрические задачи Аксонометрические проекции Выполнить необходимые разрезы Построить чертеж кондуктора Построить три проекции призмы

Плоскость общего положения

Плоскостью общего положения называется плоскость, не перпендикулярная и не параллельная ни одной из плоскостей проекций, а значит, расположенная под произвольным углом к каждой из них.

У такой плоскости все проекции будут невырожденные. Например, если плоскость общего положения задана плоской фигурой (треугольником), то все три проекции ее будут треугольниками (рис. 2.4).

Подпись: Рис. 2.4. Плоскость общего положения, заданная треугольником

 

Принадлежность точки и прямой плоскости

Признаки принадлежности хорошо известны из курса планиметрии. Наша задача рассмотреть их применительно к проекциям геометрических объектов.

Точка принадлежит плоскости, если она принадлежит прямой, лежащей в этой плоскости.

Принадлежность прямой плоскости определяется по одному из двух признаков:

а) прямая проходит через две точки, лежащие в этой плоскости;

б) прямая проходит через точку и параллельна прямой, лежащим в этой плоскости.

Используя эти свойства, решим в качестве примера задачу. Пусть плоскость задана треугольником АВС. Требуется построить недостающую проекцию D1 точки D, принадлежащей этой плоскости. Последовательность построений следующая (рис. 2.5).

Подпись:  Рис. 2.5. К построению проекций точки, принадлежащей плоскости

Через точку D2 проводим проекцию прямой d, лежащей в плоскости DАВС, пересекающую одну из сторон треугольника и точку А2. Тогда точка 12 принадлежит прямым А2D2 и C2В2. Следовательно, можно получить ее горизонтальную проекцию 11 на C1В1 по линии связи. Соединив точки 11 и А1, получаем горизонтальную проекцию d1. Ясно, что точка D1 принадлежит ей и лежит на линии проекционной связи с точкой D2.

Достаточно просто решаются задачи на определение принадлежности точки или прямой плоскости. На рис. 2.6 показан ход решения таких задач. Для наглядности изложения задачи плоскость задаем треугольником.

Рис. 2.6. Задачи на определение принадлежности точки и прямой плоскости.

Для того, чтобы определить принадлежит ли точка Е плоскости DАВС, проведем через ее фронтальную проекцию Е2 прямую а2. Считая, что прямая а принадлежит плоскости DАВС, построим ее горизонтальную проекцию а1 по точкам пересечения 1 и 2. Как видим (рис. 2.6, а), прямая а1 не проходит через точку Е1. Следовательно, точка Е ÏDАВС.

В задаче на принадлежность прямой в плоскости треугольника АВС (рис. 2.6, б), достаточно по одной из проекций прямой в2 построить другую в1* считая, что вÌDАВС. Как видим, в1* и в1 не совпадают. Следовательно, прямая в Ë DАВС.

Линии уровня в плоскости

Определение линий уровня было дано ранее. Линии уровня, принадлежащие данной плоскости, называются главными. Эти линии (прямые) играют существенную роль при решении ряда задач начертательной геометрии.

Рассмотрим построение линий уровня в плоскости, заданной треугольником (рис. 2.7).

Рис. 2.7. Построение главных линий плоскости, заданной треугольником

Горизонталь плоскости DАВС начинаем с вычерчивания ее фронтальной проекции h2, которая, как известно, параллельна оси ОХ. Поскольку эта горизонталь принадлежит данной плоскости, то она проходит через две точки плоскости DАВС, а именно, точки А и 1. Имея их фронтальные проекции А2 и 12, по линии связи получим горизонтальные проекции (А1 уже есть) 11. Соединив точки А1 и 11, имеем горизонтальную проекцию h1 горизонтали плоскости DАВС. Профильная проекция h3 горизонтали плоскости DАВС будет параллельна оси ОХ по определению.

Фронталь плоскости DАВС строится аналогично (рис. 2.7) с той лишь разницей, что ее вычерчивание начинается с горизонтальной проекции f1, так как известно, что она параллельна оси ОХ. Профильная проекция f3 фронтали должна быть параллельна оси ОZ и пройти через проекции С3, 23 тех же точек С и 2.

Профильная линия плоскости DАВС имеет горизонтальную р1 и фронтальную р2 проекции, параллельные осям OY и OZ, а профильную проекцию р3 можно получить по фронтальной, используя точки пересечения В и 3 с D АВС.

При построении главных линий плоскости необходимо помнить лишь одно правило: для решения задачи всегда нужно получить две точки пересечения с данной плоскостью. Построение главных линий, лежащих в плоскости, заданной иным способом, ничуть не сложнее рассмотренного выше. На рис. 2.8 показано построение горизонтали и фронтали плоскости, заданной двумя пересекающимися прямыми а и в.

Рис. 2.8. Построение главных линий плоскости, заданной пересекающимися прямыми.

Взаимное положение прямых и плоскостей

Для решения некоторых задач начертательной геометрии существенное значение имеет расположение рассматриваемых геометрических объектов либо параллельно, либо перпендикулярно друг другу. В связи с этим рассмотрим признаки, по которым можно определить параллельность либо перпендикулярность геометрических объектов, а также зависящие от них правила построения проекций геометрических объектов, расположенных под определенным углом друг к другу.

Следует отметить, что эти признаки хорошо известны из курса планиметрии, нашей же целью является их применение к задачам начертательной геометрии.

Параллельность прямых и плоскостей

а). Если прямые параллельны друг другу, тогда параллельны и их одноименные проекции. Это свойство достаточно очевидно и в пояснениях не нуждается.

б). Прямая параллельна плоскости, если она параллельна какой-либо прямой, лежащей в этой плоскости. Тогда для построения параллельной прямой а (рис. 2.9, а) необходимо, чтобы обе ее проекции были параллельны одноименным проекциям прямой (например, АВ), лежащей в данной плоскости. В соответствии с рис. 2.9, а прямая а параллельна плоскости Н, заданной двумя пересекающимися прямыми АВ и ВС. В математической форме это можно записать так: а ççН (АВ Ç ВС).

Рис. 2.9. Построение параллельно расположенных геометрических объектов

в) Плоскости параллельны друг другу, если две пересекающиеся прямые одной плоскости попарно параллельны двум пересекающимся прямым другой плоскости. Для интерпретации этого свойства достаточно дополнить построения на рис. 2.9, а еще одной прямой в, пересекающей а и параллельной ВС (рис. 2.9, б). Математическая запись выглядит так: Г(а Ç в) ççН (АВÇВС).

Перпендикулярность прямых и плоскостей

Вопрос перпендикулярности геометрических объектов начинаем с рассмотрения перпендикулярности прямой и плоскости, так как остальные сочетания зависят от этого признака.

а). Прямая перпендикулярна к плоскости, если она перпендикулярна к двум пересекающимся прямым лежащим в этой плоскости, одна из которых фронталь, а другая горизонталь.

Дополнение насчет горизонтали и фронтали весьма существенно. Хотя для перпендикулярности вполне достаточно чтобы указанными пересекающимися прямыми были любые прямые в данной плоскости, однако только горизонталь и фронталь позволяют получить без искажений проекции прямого угла (в соответствии с Теоремой о прямом угле), образованного перпендикуляром к плоскости и фронталью (на П2) и перпендикуляром к плоскости и горизонталью (на П1). Тогда очевидно, что горизонтальная проекция этого перпендикуляра расположена под прямым углом к горизонтальной проекции горизонтали, а фронтальная проекция  — под прямым углом к фронтальной проекции фронтали.

Покажем на примере (рис. 2.10, а). Пусть плоскость задана треугольником АВС. Требуется построить перпендикулярную к ней прямую, проходящую через точку D.

Рис. 2.10. Построение перпендикулярно расположенных геометрических объектов.

Сначала вычертим главные линии плоскости горизонталь и фронталь, затем из точки D1 проведем перпендикуляр g1 к h1, а из точки D2 - перпендикуляр g2 к f2. Математически результат можно записать так: g ^ H(DАВС).

б). Плоскости перпендикулярны друг к другу, если одна из них содержит перпендикуляр к другой.

Тогда, возвращаясь к рис. 2.10, а, где перпендикуляр g к плоскости уже построен, необходимо через точку D провести произвольную прямую q (рис. 2.10, б). В математической форме запись выглядит так: Г(g Ç q) ^ Н(DАВС).

То, что вторая прямая q проводится произвольно неудивительно, так как через перпендикуляр к плоскости можно построить веер плоскостей, перпендикулярных к данной.

в). Прямые взаимно перпендикулярны, если на одной из них можно построить плоскость, перпендикулярную к другой прямой.

Пусть требуется построить перпендикуляр к g, проходящий через точку А. Следуя вышеуказанному признаку, сначала нужно построить плоскость, перпендикулярную к g и проходящую через точку А. Эта плоскость будет задана фронталью f и горизонталью h, причем h1 ^ g1 и f2 ^ g2, а проекции h2 и f1 проводим параллельно оси ОХ (рис. 2.11).

Рис. 2.11. Построение взаимно перпендикулярных прямых.

Любая прямая, лежащая в этой плоскости, будет перпендикулярна g. Например, прямая АВ, полученная по точкам пересечения 1 и 2 с плоскостью, заданной h и f. При решении этой задачи следует учесть, что если мы хотим построить пересекающиеся перпендикулярные прямые, тогда прямая АВ должна быть построена единственным образом. А именно, сначала требуется найти точку В, пересечения g и плоскости Н (h Ç f), затем провести АВ. В нашем случае АВ выбрана произвольно и точка В не является точкой пересечения g и плоскости Н (h Ç f). Вопросы пересечения прямой и плоскости рассматриваются ниже.

ЗУБЧАТЫЕ ПЕРЕДАЧИ Достоинства: - Компактность - Высокий КПД - Высокая долговечность - Надежность работы в разных условиях - Простота эксплуатации - Малые нагрузки на валы и опоры - Неизменность передаточного отношения Недостатки: - Высокие требования к точности изготовления - Значительный шум, вследствие неточности изготовления - Передача не смягчает вибрации, а сама является их источником - Не может служить предохранителем - Большие габариты при необходимости больших межосевых расстояний - Невозможность обеспечить бессту-пенчатое регулирование.
Построить проекции конуса вращения