Пределы функции на бесконечности Первый замечательный предел Непрерывность функции в точке Основные правила дифференцирования Производные и дифференциалы высших порядков Предел функции

Курс высшей математики решение задач

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ НЕЗАВИСИМОЙ ПЕРЕМЕННОЙ Введение в математический анализ 11. Постоянные и переменные величины. Определение функции. Область определения функции; способы ее задания. Графическое изображение функции. Основные сведения из классификации функций. 12. Числовые последовательности, их сходимость. Предел числовой последовательности. Теорема о существовании предела монотонной ограниченной последовательности (формулировка).

Функции

Пусть x, y – переменные величины. Если каждому значению переменных x из множества A соответствует по определенному закону единственное значение переменной y, то говорят, что y является функцией (однозначной) от x и пишут y = f(x) или
y = y(x). При этом переменную x называют аргументом или независимой переменной, множество A – областью определения функции y = f(x). Обозначим множество всех значений функции, т.е. {f(x)|x A}, через B.

Пример 1. Для функции y =  область определения A = (–, –1][1, +), множество значений B = [0, +).

Пример 2. y =  , A = R, B = (–, +1].

Замечание. Иногда рассматривают многозначные функции, допуская, что каждому значению xA, соответствует одно или более одного значений y. Мы в дальнейшем под функцией будем понимать однозначную функцию.

Способы задания функции

Аналитический способ: связь между аргументом x и функцией y задается формулой, при этом на разных участках области определения она может задаваться различными формулами (см. пример 2) . В примерах 1, 2 функции заданы аналитически.

Табличный способ: функция задается таблицей отдельных значений аргумента и соответствующих значений функции. Такими являются таблицы тригонометрических функций, таблицы логарифмов и т.д.

Графический способ: в этом случае соответствие между значениями x и y задается с помощью графика.

Среди числовых функций особое место занимают функции с областью определения A = N. Пусть аргумент функции f(x) принимает только значения 1, 2, 3,....n,...

Обозначим f(1) = a1, f(2) = a2, ..., f(n) = an, ... Такую функцию называют последовательностью, a1 – первый член, ..., an – n-й член этой последовательности.

Рассмотрим свойства, которыми могут обладать (или не обладать) некоторые функции.

Функция f(x) называется возрастающей на множестве M (строго), если большему значению аргумента соответствует большее значение функции.

Символически это может быть записано так: x1, x2M (x1 < x2  f(x1) < f(x2)).

Функция f(x) называется убывающей (строго) на множестве M, если большему значению аргумента соответствует меньшее значение функции. Символически:
x1, x2M (x1< x2  f(x1) > f(x2)).

Функция, убывающая или возрастающая на множестве M, называется монотонной на множестве M.

В качестве примера рассмотрим функцию y = x2. На интервале (–, 0) это убывающая функция, а на интервале (0, +  ) – возрастающая.

Функция f(x) называется ограниченной сверху на множестве M, если существует такое число k, что для любого значения xM f(x) < k.

Символически это может быть записано так: k xM (f(x) < k).

Аналогично дается определение функции, ограниченной снизу.

Если функция ограничена и сверху, и снизу, то она называется ограниченной. Так, функция y = ограничена снизу на множестве A (пример 1), а функция из примера 2 ограничена сверху на множестве R.

Функция f(x) называется четной, если xA (f(–x) = f(x)), и называется нечетной, если xA (f(–x) = –f(x)).

Например, функция y = x2 является четной, а y = sinx – нечетной.

Функция f(x) называется периодической с периодом T (T  0 ), если
xA(f(x + T) = f(x)).

Известно, что все тригонометрические функции являются периодическими.

Введем важные понятия сложной и обратной функции.

Если переменная y является функцией от x, y = f(x); а x – функция от переменной t: x = (t), то y = f((t)) является функцией от t и называется сложной функцией или функцией от функции.

Например, пусть y = x2, x = sint, тогда функция y = (sint)2 является сложной.

Пусть y = f(x) с областью определения A и множеством значений B такова, что для любого значения yB существует единственное значение xB, такое, что f(x) = y, тогда переменная x является функцией от y, обозначим x = (y). Эту функцию называют обратной для y = f(x). Для обратной функции x = (y) область определения B, а множество значений A. Иногда функцию, обратную к функции y = f(x), обозначают: .

Например, для функции y = x2 с областью определения [0, +) и таким же множеством значений обратной является функция: x =.

В дальнейшем часто будет использоваться понятие абсолютной величины числа, а также понятие  – окрестности точки.

Абсолютной величиной числа a называется неотрицательное число, обозначаемое |a|, такое, что

|a| = .

Неравенство |x| < m ( m > 0 ) равносильно двойному неравенству –m < x < m, неравенство |x – x0| <  ( > 0) равносильно x0 –  < x< x0 + Множество точек с таким свойством (рис. 1.1) является интервалом (x0 – , x0 + ) и называется  – окрестностью точки x0 (рис. 1.1).

Интегрирование правильных дробей методом разложения на простейшие дроби

Случай 1. Знаменатель правильной дроби имеет только действительные различные корни, то есть разлагается на линейные множители вида '' ''.

Пример 18. Вычислить интеграл .

Подынтегральная функция разлагается на сумму трех простейших дробей ,
где А, В, С – неопределенные коэффициенты. Найдем А, В, С.

. Пусть , тогда

. Пусть х=2, тогда   или .

Пусть х=-1, тогда   или .

Итак, . Имеем:

=

=

Случай 2. Знаменатель правильной дроби имеет только действительные корни, причем некоторые из них кратные, то есть знаменатель разлагается на линейные множители вида '' '', некоторые из них повторяются.

Пример 19. Вычислить интеграл

Подынтегральная функция разлагается на сумму трех простейших дробей, множителю   соответствует сумма двух дробей:


Решение типовых задач по математике