Цепи постоянного тока Задачи контрольной работы
Кривая линия общего вида Комплексный чертеж Законы проекционной связи Поверхность вращения Пересечение геометрических фигур Построить сечение пирамиды Метод концентрических сфер

Математика примеры решения задач курсового расчета

Метод Эйлера

Аналогично однородным линейным дифференциальным уравнениям с постоянными коэффициентами для СОЛДУ , где
  – const, можно попытаться найти решение в виде , где
 – постоянный вектор,  – постоянное число. Подставляя эту вектор-функцию в СОЛДУ, получаем  или , т.е.  должно быть собственным значением (сокр. с.з.), а   – соответствующим ему собственным вектором (сокр. с.в.) матрицы .

ПРИМЕР 11. Решить СОЛДУ .

Решение. Для матрицы  собственные значения – корни характеристического уравнения

. Ротор (вихрь) векторного поля Математика вычисление интеграла

Для   с.в. матрицы – вектор  – находим, решая систему линейных алгебраических уравнений

. Придавая некоторое произвольное значение одной переменной, найдем значение другой: например, . Итак,  – решение рассматриваемой СОЛДУ.

Для  аналогично получаем , например, и соответственно  – решение СОЛДУ. Количество решений точно равно порядку СДУ, они линейно независимы, поскольку определитель, составленный из этих решений, не обращается в ноль, поэтому общее решение СОЛДУ имеет вид .

Для получения ФСР СОЛДУ -го порядка нужно знать точно "" линейно независимых решений; в нашем случае количество решений СОЛДУ п/к определяется количеством и структурой корней характеристического уравнения

.  (15)

Возможны следующие ситуации. Решить систему линейных уравнений методом Гаусса.

1. Корни уравнения (15) действительные и попарно различные . Находим  решений , , . Определитель Вронского для этих решений , причем

, поскольку собственные векторы для различных попарно собственных значений матрицы линейно независимы. Итак, общее решение СОЛДУ п/к  в рассматриваемом случае запишем

,

где фундаментальная матрица строится из столбцов .


Частный случай теоремы Г.Монжа